Bildtransformationen
Bildtransformationen
by Simon Tyran, Vienna @ youtube || rumble || odysee || minds || wikipedia || stackexchange || License: CC-BY 4 ▣ If images don't load: [ctrl]+[F5]
Bildtransformationen
Der Hauptartikel ist in der Wolfram Sprache geschrieben; man kommt aber, wenn auch etwas umständlicher, auch mit Python, Matlab oder Maple ans Ziel. Beispiel: Mollweide→Equirectangular in
Python 2.7
1: Speichere Original-Bild im .ppm (Portable Pixmap) Format
2: Run Python 2.7.4 plus Scipy, Numpy und Pil Module
3: Run Script:
Codes in Matlab und Maple folgen demnächst.
Mehrsprachig,
Python 2.7
1: Speichere Original-Bild im .ppm (Portable Pixmap) Format
2: Run Python 2.7.4 plus Scipy, Numpy und Pil Module
3: Run Script:
Code: Alles auswählen
# Python 2.7 (32Bit) Syntax
# Benötigte Module: Numpy, Scipy, PIL
import numpy
from scipy import misc
import sys
infile = "C:\\Users\\Yukterez\\Desktop\\planckanomalies_mollweide.ppm"
outfile = "C:\\Users\\Yukterez\\Desktop\\planckanomalies_equirectangular.ppm"
arr = misc.imread(infile)
result = numpy.empty(arr.shape)
height, width, depth = arr.shape
print "Dimensions: %ix%i" % (width, height)
class memoized(object):
def __init__(self, func):
self.func = func
self.cache = {}
def __call__(self, *args):
try:
return self.cache[args]
except KeyError:
value = self.func(*args)
self.cache[args] = value
return value
@memoized
def theta(phi):
xn = 0
old = xn+1.
while abs(xn-old)>1e-6:
old = xn
xn = xn-(xn+numpy.sin(xn)-numpy.pi*numpy.sin(phi))/(1+numpy.cos(xn))
return xn/2.
def mollweide(x, y):
th = theta(y)
return numpy.sqrt(8)*x*numpy.cos(th)/numpy.pi, numpy.sqrt(2)*numpy.sin(th)
def img2coord(a, b):
return (a*1./width-.5)*2*numpy.pi, (b*1./height-.5)*numpy.pi
def coord2img(x, y):
xround = yround = numpy.floor
if x<0: xround = lambda z: -numpy.floor(-z)
if y<0: yround = lambda z: -numpy.floor(-z)
return (xround((x/(2*numpy.sqrt(8))+.5)*width),
yround((y/(2*numpy.sqrt(2))+.5)*height))
for a in range(width):
sys.stdout.write("\r%i%%" % ( 100*a/width ))
sys.stdout.flush()
for b in range(height):
x, y = img2coord(a, b)
x, y = mollweide(x, y)
x, y = coord2img(x, y)
result[b, a] = arr[y-1, x-1]
misc.imsave(outfile, result)
sys.stdout.write("\nDone\n")
Codes in Matlab und Maple folgen demnächst.
Mehrsprachig,
by Simon Tyran, Vienna @ youtube || rumble || odysee || minds || wikipedia || stackexchange || License: CC-BY 4 ▣ If images don't load: [ctrl]+[F5]
Bildtransformationen
Anwendungsbeispiel:
Wir haben eine Karte die wir
1) neu zentrieren
2) auf eine Kugel projizieren
wollen. Als Rohmaterial wählen wir die Planck Polarisationskarte. Nachdem das Bild offensichtlich im Hammer-Aitoff-Format vorliegt benötigen wir dazu folgende Formeln:
Jetzt laden wir das Originalbild:
und verwandeln es in eine Plattkarte:
die wir neu zentrieren:
wieder zurückverwandeln:
und auf eine Kugel projizieren:
Anderer Blickwinkel:
,
Wir haben eine Karte die wir
1) neu zentrieren
2) auf eine Kugel projizieren
wollen. Als Rohmaterial wählen wir die Planck Polarisationskarte. Nachdem das Bild offensichtlich im Hammer-Aitoff-Format vorliegt benötigen wir dazu folgende Formeln:
Code: Alles auswählen
(* Hammer Aitoff >> Equirectangular *)
HA2Eq[{x_, y_}] := {X[x, y], Y[x, y]};
X[x_, y_] := (2 Sqrt[2] Cos[y] Sin[x/2])/Sqrt[1 + Cos[y] Cos[x/2]];
Y[x_, y_] := (Sqrt[2] Sin[y])/Sqrt[1 + Cos[y] Cos[x/2]];
(* Equirectangular >> Hammer Aitoff *)
Eq2HA[{x_, y_}] := {Lha[x, y], Bha[x, y]};
ζ[x_, y_] := Sqrt[1 - x^2/16 - y^2/4];
Bha[x_, y_] := ArcSin[ζ[x, y] y];
Lha[x_, y_] := 2 ArcTan[ζ[x, y] x/(2 (2 ζ[x, y]^2 - 1))];
(* Kugelkoodinaten >> 3D *)
xyz[{x_, y_}] :=
{Sin[y] Cos[x],
Sin[y] Sin[x],
Cos[y]}
(* Rotation auf der x-Achse *)
Xyz[{x_, y_, z_}, α_] :=
{x Cos[α] - y Sin[α],
x Sin[α] + y Cos[α], z}
(* Rotation auf der y-Achse *)
xYz[{x_, y_, z_}, β_] :=
{x Cos[β] + z Sin[β], y, z Cos[β] - x Sin[β]}
(* Rotation auf der z-Achse *)
xyZ[{x_, y_, z_}, ψ_] :=
{x, y Cos[ψ] - z Sin[ψ], y Sin[ ψ] + z Cos[ψ]}
(* 3D >> Kugelkoordinaten *)
xy[{x_, y_, z_}] :=
{ArcTan[x, y], ArcCos[z]}
(* Winkeltransformation *)
rm[pic_, α_, β_, ψ_] :=
xy[xyZ[xYz[Xyz[xyz[pic], α], β], ψ]];
Eq2Eq[{x_, y_}] := rm[{x, y}, α, β, ψ];
(* Equirectangular >> Kugel *)
Kugel[pic_, {X_, Y_, Z_}] := SphericalPlot3D[
1, {u, 0, π}, {v, 0, 2 π},
Mesh -> None,
TextureCoordinateFunction -> ({#5, 1 - #4} &),
PerformanceGoal -> "Quality",
PlotStyle -> Directive[Texture[pic]],
Lighting -> "Neutral",
Axes -> False,
RotationAction -> "Clip",
SphericalRegion -> True,
Boxed -> False,
ViewPoint -> {X, Y, Z},
ViewAngle -> 1/5,
ImageSize -> 700,
PlotPoints -> 240];
Jetzt laden wir das Originalbild:
Code: Alles auswählen
(*Rohmaterial laden*)
HA = Import["C:\\Users\\Yukterez\\Desktop\\cmb.polarisation.jpg"]
und verwandeln es in eine Plattkarte:
Code: Alles auswählen
(* Hammer-Aitoff >> Equirectangular *)
Eq = ImageTransformation[HA, HA2Eq,
DataRange -> {{-2 Sqrt[2], 2 Sqrt[2]}, {-Sqrt[2], Sqrt[2]}},
PlotRange -> {{-π, π}, {-π/2, π/2}}]
die wir neu zentrieren:
Code: Alles auswählen
(* Neue Zentrierung *)
α = +π; β = +π/4; ψ = +π/4; (* Perspektive *)
Eq2 = ImageTransformation[Eq, Eq2Eq,
DataRange -> {{-π, π}, {0, π}},
PlotRange -> {{-π, π}, {0, π}}]
wieder zurückverwandeln:
Code: Alles auswählen
HA2 = ImageTransformation[Eq2, Eq2HA,
DataRange -> {{-π, π}, {-π/2, π/2}},
PlotRange -> {{-2 Sqrt[2], 2 Sqrt[2]}, {-Sqrt[2], Sqrt[2]}}]
und auf eine Kugel projizieren:
Code: Alles auswählen
(* Equirectangular >> Kugel *)
α = π; β = 0; ψ = 0; x = 5;
sphere1 = Kugel[Eq,
{x Cos[α] Cos[β],
x Cos[ψ] Sin[α] + x Cos[α] Sin[β] Sin[ψ],
x Sin[α] Sin[ψ] - x Cos[α] Cos[ψ] Sin[β]}]
Anderer Blickwinkel:
Code: Alles auswählen
(* Equirectangular >> Kugel *)
α = π; β = π/4; ψ = -π/4; x = 5;
sphere1 = Kugel[Eq,
{x Cos[α] Cos[β],
x Cos[ψ] Sin[α] + x Cos[α] Sin[β] Sin[ψ],
x Sin[α] Sin[ψ] - x Cos[α] Cos[ψ] Sin[β]}]
,
by Simon Tyran, Vienna @ youtube || rumble || odysee || minds || wikipedia || stackexchange || License: CC-BY 4 ▣ If images don't load: [ctrl]+[F5]
Wer ist online?
Mitglieder in diesem Forum: 0 Mitglieder und 0 Gäste