links: unbewegtes Inertialsystem mit Fokus auf den fahrenden Empfänger rechts: fahrendes Inertialsystem mit Fokus auf den fahrenden Empfänger

(* Mathematica Code für synchronisierten Loop *)
(* Leisten: t → 0 .. 2 λ/c | τ → 0 .. 2 λ/c/γ *)

v  = c/2;
c  = 1;
d1 = Sqrt[(c + v)/(c - v)];
d2 = 1/d1;
γ  = 1/Sqrt[1 - v^2/c^2];
Λ  = 2 π;

Manipulate[{

Plot[{

Sin[(x + (c + v) t)],
Sin[(x - (c - v) t)],
Sin[(x + (c + v) t)] + Sin[(x - (c - v) t)]

}, {x, 0, 4 π},

Frame -> True,
ImageSize -> 360,
PlotRange -> {{0, 4 π}, {-2, 2}},
PlotStyle -> {{Blue, Thick}, {Red, Thick}, { Green, Thick}},
FrameTicks -> {{{-1, 0, 1}, None},
{{0, π, 2 π, 3 π}, None}},
GridLines -> {{}, {

Sin[(0 + (c + v) t)],
Sin[(0 - (c - v) t)],
Sin[(0 + (c + v) t)] + Sin[(0 - (c - v) t)]

}}],

Plot[{

Sin[(d1 x + c t/γ d1)],
Sin[(d2 x - c t/γ d2)],
Sin[(d1 x + c t/γ d1)] + Sin[(d2 x - c t/γ d2)]

}, {x, 0, 4 π/γ},

Frame -> True,
ImageSize -> 360,
PlotRange -> {{0, 4 π/γ}, {-2, 2}},
PlotStyle -> {{Blue, Thick}, {Red, Thick}, { Green, Thick}},
FrameTicks -> {{{-1, 0, 1}, None},
{{0, N[π/γ, 6], N[2 π/γ, 6], N[3 π/γ, 6]}, None}},
GridLines -> {{}, {

Sin[(d1 0 + c t/γ d1)],
Sin[(d2 0 - c t/γ d2)],
Sin[(d1 0 + c t/γ d1)] + Sin[(d2 0 - c t/γ d2)]

}}]},

{t, 0, 2 Λ/c}]

(* Симон Тыран, Vienna 2015 | proper code: index *)