links: unbewegtes Inertialsystem mit Fokus auf die unbewegte Strecke rechts: fahrendes Inertialsystem mit Fokus auf die unbewegte Strecke

(* Mathematica Code für synchronisierten Loop *)
(* Zeitleisten: t → 0 .. λ/c | τ → 0 .. λ/c γ *)

v  = c/2;
c  = 1;
d1 = Sqrt[(c+v)/(c-v)];
d2 = 1/d1;
γ  = 1/Sqrt[1-v^2/c^2];
Λ  = 2 π;

Manipulate[{

Show[

Table[Plot[{

Sin[x + c т] + Sin[x - c т],

}, {x, 0, 4 π},
PlotStyle->{LightGreen},
Frame -> True,
ImageSize -> 360,
PlotRange -> {{0, 4 π}, {-2, 2}}],
{т, 0, Λ, Λ/90}],

Plot[{

Sin[x + c t] + Sin[x - c t],

2 Sin[x],
2 Sin[x + π]

}, {x, 0, 4 π},
Frame -> True,
PlotRange -> {{0, 4 π}, {-2, 2}},
GridLines -> {{π, 2 π, 3 π}, {}},
PlotStyle -> {{Green, Thick}, Dashed, Dashed},
FrameTicks -> {{{-1, 0, 1}, None},
{{0, π, 2 π, 3 π}, None}}]

],

Show[

Table[Plot[{

Sin[d1 x + c т] + Sin[d2 x - c т],

}, {x, 0, 4 π},
PlotStyle->{LightGreen},
Frame -> True,
ImageSize -> 360,
PlotRange -> {{0, 4 π/γ}, {-2, 2}}],
{т, 0, Λ, Λ/60}],

Plot[{

Sin[d1 x + c t] + Sin[d2 x - c t],

2 Sin[x γ],
2 Sin[π + x γ]

}, {x, 0, 4 π/γ},
Frame -> True,
PlotRange -> {{0, 4 π/γ}, {-2, 2}},
GridLines -> {{π/γ, 2 π/γ, 3 π/γ}, {}},
PlotStyle -> {{Green, Thick}, Dashed, Dashed},
FrameTicks -> {{{-1, 0, 1}, None},
{{0, N[π/γ, 6], N[2 π/γ, 6], N[3 π/γ, 6]}, None}}]

]},

{t, 0, Λ/c}]

(* Симон Тыран, Vienna 2015 | proper code: index *)