(* Zeitdilatation auf einer rotierenden geometrischen Kugel *) α = 0; {"α" -> N[α 180/π], "Sin[α]" -> N[Sin[α]], "Cos[α]" -> N[Cos[α]]} β = π/4; {"β" -> N[β 180/π], "Sin[β]" -> N[Sin[β]], "Cos[β]" -> N[Cos[β]]} δ = π/3; {"δ" -> N[δ 180/π], "Sin[δ]" -> N[Sin[δ]], "Cos[δ]" -> N[Cos[δ]]} ω = 72921*^-9/sek; r = 6371000 m; G = 667384*^-16 m^3 kg^-1 sek^-2; M = 5972 10^21 kg; c = 299792458 m/sek; R = {-1.5, 1.5}; P[ε_, γ_] := {Cos[γ]*Cos[ε], Sin[ε], Sin[γ]*Cos[ε]} plot[X_, Y_, Z_] := Quiet[Manipulate[ Graphics3D[{ {Opacity[0.1], Sphere[{0, 0, 0}, 1]}, {Red, Point[P[α, γ]]}, {Dashed, Line[{P[α, γ], {0, 0, 0}}]}, {Blue, Point[P[β, γ]]}, {Dashed, Line[{P[β, γ], {0, 0, 0}}]}, {Green, Point[P[δ, γ]]}, {Dashed, Line[{P[δ, γ], {0, 0, 0}}]} }, ViewPoint -> {X, Y, Z}, ImageSize -> 220, PlotRange -> {R, R, R}], {γ, 0, 2 π}, ControlPlacement -> Top]] p1 = plot[0, 0, 4] p2 = plot[0, 4, 0] p3 = plot[4, 4, 4] τg = Sqrt[1 - (2 G M)/(r c^2)]; τ[ε_] := Sqrt[1 - (ω Cos[ε] r)^2/c^2]; N[1 - τg τ[α], 13] (* ZD bei Breitengrad (Äquator) *) N[1 - τg τ[β], 13] (* ZD bei Breitengrad 45 *) N[1 - τg τ[δ], 13] (* ZD bei Breitengrad 60 *) N[1 - τg, 13] (* ZD bei Breitengrad 90 (Pol) *)